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Abstract

The Sims-Flanagan method of approximating low-thrust trajectories is imple-
mented with the direct optimization model to find optimal interplanetary transfers.
This method approximates continuous low-thrust arcs as a series of impulsive ma-
neuvers separated by either fixed or variable time steps. Non-linear constraints are
placed on the optimization method to ensure that the impulsive maneuver magnitude
and segment time satisfy the low-thrust constraint described by Sims and Flanagan.
Additional constraints are implemented for mission design parameters such as launch
energy, final mass, and available thrust. It is able to find energy or mass optimal
transfers between bodies. This paper covers the development of the optimizer, com-
pares its results to an existing implementation of the Sims-Flanagan model, and is
tested for interplanetary trajectories. The current implementation uses the two-body
dynamical model and is able to read ephemeris data. Example cases to Venus, Mars,
and Ceres are demonstrated.

1 Introduction

Since the successes of Deep Space 1, the viability and technological development of low-thrust propul-
sion systems for interplanetary trajectories has significantly increased. These trajectories can offer a
considerable mass delivered advantage over the conventional high-thrust chemical propulsion systems.
Previously prohibitively costly high-thrust trajectories can be reformulated to use low-thrust to in-
crease the total ∆V and mass delivered[15]. For its advantages, optimization of low-thrust trajectories
come at a cost in their computational effort and methods. Because low-thrust trajectories have con-
tinuous thrusting arcs, finding optimal solutions for these transfers is inherently difficult and resource
intensive[11]. Performing long-duration low-thrust burns poise additional scheduling and hardware
reliability considerations, though the benefits can outweigh the costs.

John Sims and Steve Flanagan at the NASA Jet Propulsion Laboratory pioneered a method to
approximate these arcs in their paper ”Preliminary Design of Low-Thrust Interplanetary Missions” in
1997[8]. This solution is derived from a series of impulsive ∆Vs along with coasting segments, and is
constrained by a maximum segment ∆V magnitude. The method and its implementation are described
and implemented in a direct optimization problem in this paper.

Both direct and indirect methods exist to optimize low thrust trajectories. Indirect methods,
or known as optimal control methods, are derived from variational calculus and are highly sensitive
to the initial guess for the states and adjoints[10]. Programs such as VARITOP, SEPTOP[9], and
MYSTIC[13] use this for continuous solutions in high-fidelity dynamical models. While powerful and
comprehensive, these methods are slow and time consuming, especially during the rapid prototyping
phase of trajectory design. Therefore, the alternate formulation of low-thrust trajectory design prob-
lems is done with the direct method discussed by Sims and Flanagan. The current state of the art
tools are MALTO and GALLOP, and the Advanced Concepts Team at ESA has actively worked to
improve computational methods and dynamical models within this problem framework[15]. NSTOP
is the current in-house implementation of this method at CU Boulder[12]. The direct method is a
non-linear programming problem (NLP) and has its cost minimized, subject to constraints through an
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optimal decision vector. This method is more robust to the initial state, but the decision vector can
become considerably large as more intermediate thrusting arcs are included.

In this paper, the direct method of optimization is utilized to create low-thrust interplanetary
trajectories using the Sims-Flanagan approximation. The paper is broken into three main sections: 1)
Problem Formulation, 2) Example Cases, and 3) Future Work.

2 Problem Formulation

2.1 Sims-Flanagan Low-Thrust Model

The Sims-Flanagan method to approximate low thrust trajectories is designed to reformulate a con-
tinuous time problem into a discrete non-linear programming one. This is done by approximating
the contributions of a continuous thrusting arc as a single impulsive maneuver followed by a coasting
period[9, 10, 8]. An arbitrary number of segments (n) can be selected to characterize the low-thrust

trajectory. The decision vector (X⃗) contains the maneuver components for each segment as well as
the maneuver time.

X⃗ =



∆v1x
∆v1y
∆v1z
...

∆vnx
∆vny
∆vnz
t1
...
tn


(3n+n)×1

(1)

Eq. 1 shows a variable-time decision vector. The first set of elements in this vector corresponds to
the Cartesian coordinates of each segments maneuver. Polar coordinates, or any set of coordinates for
that matter, can be used here. The next set of elements are the encounter times for each segment.
In a variable-time setup, the optimizer is able to change the propagation time between maneuvers to
better exploit the dynamics of the system. A fixed time optimizer will omit all but one time value
from X⃗. This value will correspond to the time of flight (TOF) to the arrival body, and the optimizer
will propagate each segment forward by the TOF divided by the number of segments. Variable-
time optimization adds n − 1 more elements to the decision vector which will increase computation
times. A direct optimization algorithm is allowed to vary this independent vector such that the cost
is minimized and the constraints on the function are met. The following constraint on the impulsive
maneuver formulated for the decision vector must be enforced by the optimizer to meet Sims and
Flanagan’s low-thrust criteria:

0 ≥ |∆⃗vi|
dti

− Tmax

m
i = 1, ..., n (2)

where ∆vi is the the impulsive maneuver vector, dti is the segment time length, Tmax is the maximum
thrust, and m is the spacecraft mass. At each segment (i), this inequality constraint must be satisfied
for a proper low thrust approximation. An equality constraint is introduced to match the post-
propagated decision vector state with the desired final state. Either position, or position and velocity
are good candidates for this equality constraint. The latter is useful for a zero ∆V capture to the
arrival body (V∞=0). Additionally, constraints on the launch energy (C3), flight time, mass, and
thrust can be enforced to model mission scenarios.

2.2 Direct Optimization Solver

2.2.1 MATLAB Toolboxes

For this problem, the MATLAB Optimization Toolbox was utilized for direct optimization. Available
through the university’s software suite, this extension package for the base install of MATLAB allows
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users to formulate optimization problems in a variety of methods and includes black-box solvers for
linear programming (LP), quadratic programming (QP), nonlinear programming (NLP), and other
methods[5]. Modeling, problem-based optimization, or solver-based optimization schemes can be setup
by the user to satisfy their requirements. The Sims-Flanagan method of direct optimization was setup
as a nonlinear programming, problem-based optimization setup. The specifics on its implementation
are discussed in the following subsections.

In order to expedite solution computation times, MATLAB’s Parallel Computing Toolbox was
utilized. In conjunction with the Optimization Toolbox, this extension automatically configures the
optimization problem to work across a multi-core processor and MATLAB calls this feature ”parallel-
pools”[6]. For this paper, we use a computer equipped with an Advanced Micro-Devices (AMD)
Ryzen 7 5800X 8-Core processor which has a total of 16 logical compute cores. Figure 1 consists
of two screen-captures of the Windows Task Manager to show CPU utilization across these cores.
It demonstrates how MATLAB automatically offloads computation to all the available logical cores
on the processor (right sub-figure) versus only using a single thread (left sub-figure) for an example
optimization problem. The CPU utilization is increased from an average of 10 to 50 percent in this
process. An increase in the system memory was also noticed when using parallel-pools for computation,
though this only rose by a few percent. The example Earth-Mars transfer problem, discussed further
in this paper, took on average 25 seconds to compute using parallel-pools, and around 80 seconds to
compute without it. In testing it was evident that using the Parallel Computing Toolbox with the
Optimization Toolbox, on a modern-day processor, can yield significant reductions in computation
times.

Figure 1: CPU load per logical core during optimization without (left) and with parallel computing
(right).

It is worth noting that all compute times presented in this paper, except for the multi-start subsec-
tion results, include printing each iteration to a table in MATLAB’s command window and plotting
the cost graphically. This process is time intensive and considerably slows down each convergence
attempt. However, it was essential to see how the algorithm performs during the development phase
and thus computation time results discussed here include this step. To put this speed difference into
context, the Earth-Mars transfer discussed in the first example took between 25 and 30 seconds to
compute with the graphics displays turned on. Without it, the compute time dropped to an average
of 6 to 15 seconds. A significant advantage is achieved in turning these aids off, and should be done
so for batch optimization runs.

2.2.2 FMINCON Solver and Options

The MATLAB Optimization Problem framework relies on FMINCON to find the minimum of con-
strained nonlinear multi-variable function. This method is gradient-based that requires the objective
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and constraint functions to be both continuous and have continuous first derivatives[3]. The minimiza-
tion problem is shown in Eq. 3. J is the cost function, c⃗ and c⃗eq and the non-linear inequality and
equality constraints. [A], [Aeq], b⃗, and b⃗eq are the linear inequality and equality constraint matrices

and vectors. Finally, u⃗b and l⃗b are upper and lower bounds on the decision vector. For this problem
formulation, linear equality and inequality constraints are not required.

min
X⃗

J(X⃗) such that



c(X⃗) ≤ 0⃗

ceq(X⃗) = 0⃗

[A] · X⃗ ≤ b⃗

[Aeq] · X⃗ = b⃗eq

l⃗b ≤ X⃗ ≤ u⃗b

(3)

FMINCON is configured to use the Interior-Point Algorithm which solves a series of approximate
minimization problems. This is accomplished by taking either of two step methods - a direct or
conjugate step based on solving the KKT equations or using a trust region respectively[3]. For the
context of this paper, specifics on this algorithm won’t be covered but its configuration to solve the low-
thrust transfer problem will be discussed below. FMINCON is set to use the central finite difference
method to approximate derivatives, and uses the BFGS method to approximate the Hessian function.
The optimizer itself has several inputs that can be tuned by the user. In this problem, the number
of iterations and function calls are limited to 600 and 60,000 respectively. The constraint function
evaluation tolerance is set at 1e-6 and norm of the step tolerance is limited to 1e-12. In testing, these
values proved to be useful in terminating the optimization if a solution was not reached, and also
allowed the optimizer to take small steps if needed to refine the solution.

Feasibility and first-order optimality are computed by FMINCON at each iteration to determine
if the optimization is required to continue. The feasibility evaluates how well the constraints are
satisfied, and the first-order optimality reports the necessary condition for direct optimization. The
later measure does not cover the sufficiency conditions, and thus the optimization can prematurely
terminate at a local minimum[4]. Values for feasibility and optimality should be investigated by
quantifiable numbers. For example, for feasibility, the final mass, position mismatch at the terminal
segment, and thrust usage should be verified post-optimization to ensure constraints are met. For
optimality, multiple solutions can be performed to verify that the cost is minimized. A method to find
a global solution is discussed in the Multiple Start subsection.

One of the key advantages of utilizing the MATLAB Optimization toolbox problem formulation
over interfacing with FMINCON directly is the ability to switch methods of computing derivatives
and changing optimization criteria. For example, automatic differentiation can be employed over the
finite differences method for the objective and constraint derivatives simply by modifying the input
options in the problem setup[2]. Further, constraints and cost functions can be combined, switched,
or removed by modifying input properties. This convenience makes rapidly prototyping and exploring
how optimization parameters change the computation time and solution easy to do and understand.

2.3 Non-Dimensionalization

Before the transfer problem is sent for optimization, the dimensionalized inputs are converted into
non-dimensionalized (ND) quantities for ease in gradient traversing by the optimizer. This includes
the full state, thrust, ISP, mass, and time of flight. Non-dimensionalization of the position, length (L),
is done by taking the reference state at Earth and dividing the position vector by 1 AU (149597870.691
km). ND time (T) is given as the the position divided by the circular velocity of Earth. The following
expressions summarize the key variables converted to ND units:

L =
r⃗0

1AU
, T =

r⃗0√
µ

|r⃗0|
(4)

where r⃗0 is the departure position vector from Earth. From the length and time conversions, subsequent
ND units for velocity, acceleration, thrust, mass, and Isp, can be derived. Converting back to a
dimensionalized quantity is as simple as multiplying the ND quantity by the conversion factor.
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2.4 Dynamical Model

In this implementation of the Sims-Flanagan method, the following simple two-body dynamical system
is considered:

¨⃗r =
−µ

r3
r⃗ (5)

where r⃗ is the vector between the massive central body and the relatively insignificant spacecraft mass,
and µ is the gravitational parameter of the central body. There are various methods to propagate the
two-body problem including: Kepler’s equations, Kepler’s universal variable, the Taylor integration
method, and numerical integration with either fixed or variable time steps. For this formulation,
Kepler’s equations of an ellipse and hyperbola seen below:

Me = nm(dtp) = E − e sinE Mh =

√
µ

a3
(dtp) = e sinhH −H (6)

were used to propagate the solution depending on the computed eccentricity given the state vector.
Me and Mh are the elliptical and hyperbolic mean anomalies, dtp is the time past periapsis, nm is the
mean motion, E and H are the hyperbolic and eccentric anomalies, and e is the eccentricity. This
method, though not utilizing the universal variable formulation of Kepler’s problem, is still a relatively
fast and convenient method of two-body propagation. In testing, numerically integrating the trajectory
using ODE45 took over 450 seconds to compute an Earth-Mars transfer. By comparison, the current
algorithm uses less than 30 seconds to find the same solution. The possibility of a fixed step integrator
like the Runge-Kutta 4th order is viable if the dynamical model needs to include perturbations.

Planetary states are derived by two methods: 1) Meeus algorithm or 2) SPICE data. The Meeus
ephemeris algorithm is a fast and reasonably accurate method of finding planetary states given a date
in Julian centuries. It utilizes a polynomial lookup and curve-fit function to derive planetary Keplerian
elements. These elements can then be converted to a Cartesian inertial state. While fast, this algorithm
does not include small-bodies. Therefore, a second method is also implemented in this model. The JPL
Navigation and Ancillary Information Facility (NAIF) SPICE system offers high-fidelity ephemerides
for planets and small-bodies1. This data is imported via .bsp ephemeris files through the CSPICE
MICE Toolkit library for MATLAB available through the NAIF website.

2.5 Cost Functions

The optimization routine has two primary cost functions that were evaluated throughout this work.
MATLAB’s optimization setup allows for easy switching between these functions for prototyping and
analysis. Eq. 7 represents a minimum energy cost function where each segment maneuver norm is
squared and the sum total makes up the cost. This function demonstrated a significantly better and
more reliable convergence over the minimum sum of the maneuver magnitudes cost function.

J1 =

n∑
i=2

|∆vi|2 (7)

J2 = −mf (8)

The second cost function considered is the maximum final mass function as shown in Eq. 8. The time
to find an optimal solution is roughly halved compared to the maneuver sum and final mass functions.
For the examples shown in the next section, the minimum energy cost function is used.

2.6 Constraints Setup

Amodified cost function to include the constraints is not considered in this work. Therefore, constraints
are handled separately via an external function that is then evaluated by the solver. The following
constraints satisfy the criteria established by Sims and Flanagan as well as include mission design
constraints. Eq. 9 shows the optimization based constraints. The non-linear equality constraint, c⃗eq,
ensures that the component differences between the final propagated state from X⃗ and the desired body
state vector is zero within tolerance. The non-linear inequality constraint c⃗ is the low thrust constraint

1JPL NAIF Toolkit and Ephemerides Website”:https://naif.jpl.nasa.gov/naif/toolkit.html.

5

https://naif.jpl.nasa.gov/naif/toolkit.html


as described in Eq. 2. Finally, for optimizer stability, another non-linear inequality constraint is added
to ensure that each segment time is at least greater than 3600 seconds. This time value is arbitrary
and is converted to ND units before being enforced.

c⃗eq = 0⃗, c⃗ ≤ 0⃗, d⃗t ≥ 100s (9)

The next set of constraints, seen in Eq. 10 outline the spacecraft specific constraints. The final mass
must be greater than or equal to the minimum mass set by the user. The launch energy (C3) must
be less than or equal to the maximum launch energy. And finally, the difference between the available
thrust at the radial distance from the sun and the thrust required by the trajectory should be greater
than or equal to zero.

m ≥ mmin., C3 ≤ C3max, T⃗ r ≥ 0⃗ (10)

Algorithm 1 outlines how these constraints are modeled within the FMINCON evaluation function. It
begins by separating the parts of the decision variable into the maneuvers and the times. The arrival
body’s state is then found. For each segment, the state is updated and then propagated. The resulting
maneuver and time is then evaluated for the mass lost, thrust, and these are saved for evaluation of
the non-linear constraints. If it is the first segment, the launch energy is computed instead. Finally,
the post segments propagated state is subtracted by the desired state to create the equality constraint.

Algorithm 1 Constraints Evaluation Pseudo-code Algorithm

Unpack ND constants

∆⃗v = decision vector x⃗ velocity variables for each segment

if variable-time then
d⃗t = time variables for each segment
Total Time = dim. Σ|d⃗t|

else
Extract dt from x⃗
Total Time = dim. dt tGuess

end if
Query state and convert to ND of arrival body using Total Time x⃗f .

x⃗ = x⃗i, m = mi ▷ Initialize Full State at Departure Body
for i=1:n do

x⃗ = x⃗ + ∆⃗vi
x⃗ = keplerpropagation(x⃗, dti,mu=1)
if i=1 then

C3 = |∆v|2; ▷ Launch Energy
else

r = |x⃗(1 : 3)|
Tmax = ( 1

r2 )Tmax1AU ▷ Max Thrust Available

m = m exp(−|∆⃗vi|
Isp∗g0 ) ▷ Mass Decrement

T = ∆⃗vi
m
dti

▷ Thrust Required

ci =
|∆⃗vi|
dti

-Tmax

m ▷ Low-Thrust Approximation
Tri = T - Tmax ▷ Thrust within max. avail.

end if
end for

ceq = x⃗ - x⃗f ▷ Final State Vector Constraint
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2.7 Multiple Start

Finding global optima is inherently difficult for a multi-dimensional problem as such. Therefore,
several strategies exist to attempt to find these solutions. One commonly employed method is basin
hoping[12]. This method iterates on the solution by randomly perturbing the previous local minimum
solution[1, 7]. Basin hoping is limited by computational resources, meaning it can run for an arbitrary
number of restarts. Its implementation into this algorithm is considered by sequentially running the
optimizer p number of times where each iteration is k. A perturbation vector is added to the local
optimal decision vector X⃗∗

k−1 and this is shown in Eq. 11 where X⃗0 is the first iteration’s initial guess
decision vector. The MATLAB random number function is utilized to create either positive or negative
scaling terms between 0 and 1.

X⃗0,k = X⃗∗
k−1 +

X⃗0

10
rand(−1, 1) (11)

At the time of developing this algorithm, the perturbation added to the next initial guess is arbitrary.
Further research needs to be done in order to refine this guess, but due to project time constraints,
the following function is used. Figure 2 shows an example case of multiple start being applied to the

Figure 2: Earth-Mars transfer with multi-start of 25 attempts. Restart number 16 has the lowest
cost from the set of solutions. Note that computation times are faster due to suppressing real-time
graphical and tabular iteration outputs.

fixed-segment time Earth-Mars transfer for 25 iterations. Due to the arbitrary nature of the pertur-
bations, results and their respective computation times will vary. A string of unfortunate initial guess
perturbations can lead to a lack of convergence. This is seen in restart number 9 as the computation
time exceeded 80 seconds and the optimizer was prematurely terminated due to reaching the maxi-
mum function calls. If a solution is unattainable, the multi-start algorithm takes the solution from the
previously converged solution and applies another random perturbation to it. Within this example,
restart number 16 had the lowest cost. The cost is compared to the previous iteration and if it is lower,
X⃗∗

k is saved. The method of basin hoping is commonly employed in very high-dimensional topological
problems, and offers a way to find a ’global’ solution which would inherently be better than only using
completely arbitrary initial guesses once.
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3 Example Cases

3.1 Variable Segments, Fixed Time

In this example, we will investigate the optimization routine’s performance for a fixed segment time
solution between two roughly circular, co-planar orbits. For this case, a transfer between Earth and
Mars is considered which departs on a fixed date of July 01, 2020. The maximum thrust available to the
spacecraft at 1AU is 0.35 newtons, the Isp is fixed at 3000 seconds, and the guess time for the transfer
is 500 days. The maximum launch energy is capped at 12 km2/s2, the spacecraft has a initial mass of
3000 kg, and minimum final mass is 2000 kg. A similar problem setup is created in MALTO (discussed
in the introduction), and is used as a comparison to see how the optimization routine compares to the
state of the art Sims-Flanagan optimizer. It is important to note that there will be slight modeling
differences resulting in variation in the solutions between the two algorithms. This is a preliminary
examination of the optimizer to see if its performance is appropriate. Figure 3 shows a 15 segment E-M
transfer for both algorithms where the left subfigure is the current optimizer and the right is MALTO.
Red and blue vectors indicate the anti-maneuver direction (resulting motion of the spacecraft). The
blue vector is the launch maneuver and the red vectors indicate each impulsive segment. The left
subfigure trajectory alternates between green and cyan colors to indicate segments. Both trajectories
have similar structures in their maneuver placements, launch energy, and flight times. It is important
to note that subtle differences are present due to MALTO’s default optimization cost function being
to maximize final mass, and not minimize energy. Figure 4 quantifies the trajectory with information

Figure 3: Earth-Mars rendezvous transfer using 15 variable-time segments. The left subfigure is the
resulting trajectory from the optimizer, and the right subfigure is a MALTO optimized trajectory with
similar initial inputs. Note that exact modeling between these two is not targeted, and this comparison
is done to sanity-check the results from the optimizer.

on the ∆V, mass, thrust, and low-thrust constraint for each segment. Recall that by the problem
formulation, the first segment ∆V, shown as a blue, is the launch ∆V and is not factored into the cost
function. Therefore, the segments will always start at number 2 for these plots. It is evident that the
low-thrust constraint is not violated, the final mass is above the minimum, and the thrust is within
the maximum bound. The trajectory uses a total low-thrust ∆V of 2.799 km/s and has a departure
C3 of 10.889 km2/s2, and a flight time of 400 days. MALTO was fixed to depart on the same day
with a maximum C3 of 10.90 km2/s2, and has a maximum thrust (unaffected by solar panel power) of
0.35 N. Comparing this result to a MALTO Earth-Mars solution, the trajectories are similar and the
transfer TOF for the MALTO solution is 389 days. The thrust profile for the MALTO solution appears
to be always on full thrust or off. The variation of this versus the optimizer’s computed thrust versus
segments is likely due to the cost functions used (minimum energy versus maximum mass). Overall,
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this comparison demonstrates that the optimizer’s solutions are comparable to existing Sims-Flanagan
implementations of low thrust approximation.

Figure 4: Earth-Mars transfer ∆V, segment time, mass, thrust, and low-thrust constraint.

Analysis of the optimizer’s performance can be extended to the number of segments used. Generally
speaking, as the number of segments increases, the computation time will also increase. This is
due to the decision vector length increasing by 3 variables for every additional fixed time additional
segment. This number increases to 4 if we factor in variable time. It is expected that this method of
approximating a continuous thrust arc with a small number of impulsive maneuvers will lead to solution
granularity and thus inaccurate results. The sensitivity of the solution to the number of segments is
tested on the Earth-Mars case and its results are shown in Table 1. Segments are varied from 5 to

Num. of Launch C3 Low-Thrust TOF FMINCON Computation
Segments (km2/s2) ∆V (km/s) (days) Feasibility Optimality Time* (s)

5 10.89458 2.765689 461.5336 4.63E-12 8.36E-07 5.694074
6 10.89704 2.778467 444.8491 6.99E-12 2.56E-07 6.445096
7 10.89866 2.785615 433.4766 3.37E-12 2.56E-07 6.903601
8 10.89812 2.790016 425.2299 4.78E-12 6.36E-07 8.378106
9 10.89675 2.792905 418.9821 5.39E-10 3.85E-07 8.75188
10 10.89519 2.794896 414.0897 1.43E-11 4.87E-07 8.897127
12 10.89232 2.797362 406.9336 6.56E-12 3.60E-07 13.62838
15 10.88891 2.79924 400.0017 9.75E-12 2.56E-07 17.68791
21 10.88433 2.800712 392.3692 5.94E-12 5.45E-07 27.0693
25 10.57685 2.802386 393.0869 9.99E-15 4.63E-05 32.22581
29 10.88052 2.801335 375.4584 2.58E-11 4.89E-07 64.72807
31 10.50601 2.804116 387.4568 4.45E-13 1.48E-03 44.69821
35 10.46057 2.805302 384.6884 1.65E-13 2.09E-03 75.93914

Table 1: Earth-Mars fixed-time transfers for varying number of segments. The granularity of having
less than 10 segments is noticeable in the total low-thrust ∆V. A plateauing of the total low-thrust
∆V is noticed as the number of segments increases past 10. This and the computation time should
be taken into consideration when optimizing solutions. *Computation time includes displaying each
iteration graphically and in MATLAB’s command window. Speeds are considerably faster when these
real-time outputs are suppressed.

35 and the resulting parameters of the trajectory and optimization are presented. It is evident that
there is a dependence on the number of segments and the solved trajectory. This is counter-intuitive
as the optimal trajectory, general speaking, should not be dependent on the optimization inputs. A
possible explanation for this behavior is due to the algorithm not being able to use multi-start in this
test to find the best solution within a certain number of trials. Our method to find ”the optimal
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trajectory” is to find many candidate local optimal solutions and find the one with the lowest cost.
Without including this, there is variation that can creep into the results. From Table 1, a plateauing
is seen in the total ∆V as the number of segments is increased starting at roughly 10 segments. The
launch energy remains similar for the solutions with the lowest first-order optimality. The flight time
decreases as the number of points increases. A likely explanation for this is the optimizer’s efforts to
stay within the low-thrust approximation given smaller impulsive maneuver magnitudes. All solutions
reach Mars with sub-10 kilometer position differences and sub-1e-08 kilometers per second velocity
differences. These results are found in post processing given the solution’s feasibility. It is important
to note that tuning parameters and extensive testing of this algorithm have not be performed yet due
to a lack of time. If time permits, additional testing should be conducted to more rigorously find
a good number of segments that provides a good trade-off between computation time and solution
accuracy.

3.2 Variable Time

The optimization algorithm has the ability to modify the decision vector to incorporate variable time
solutions. In this example, we investigate this functionality and how it affects the solution by modeling
a Earth to Venus transfer with 15 segments. The time of flight guess is 530 days and a maximum of 1.00
newtons of thrust is available at 1 AU. The mass and Isp are identical to the previous example. Figure
5 shows the trajectory departing from Earth and arriving at Venus with a zero incoming V∞ (states of
the spacecraft and body are identical at final time). An important takeaway with this example is how
the optimizer places each impulsive maneuver by controlling the time between segments. The solver
realizes that a greater energy change is attainable when the maneuvers are placed closer to perihelion
and so the impulsive maneuver model is exploited in this manner. Long coasting arcs are observed

Figure 5: Earth-Venus rendezvous transfer using 15 variable-time segments. Red and blue vectors
indicate the anti-maneuver direction (resulting motion of the spacecraft). The blue vector is the
launch maneuver and the red vectors indicate each impulsive segment. The trajectory alternates
between green and cyan colors to indicate segments.

both in Figure 5 and Figure 6’s left-most sub-figure. The roughly 120 day time between segments 7 and
8 correspond to the coasting arc seen in the top figure. In testing, it is worth noting that the optimizer
will utilize more thrust magnitude per segment for variable time transfers as opposed to fixed time.
In this example, the minimum energy cost is used. This is measured as the sum of each segment’s ∆V
squared. During post-processing, the sum total of the impulsive ∆V of each segment is considered.
The fixed time transfer, not shown in the figures, had a total of 4.307 km/s while the variable time had
a total of 3.719 km/s. However, the fixed time solution had a peak thrust magnitude of 0.420 newtons
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Figure 6: Earth-Venus transfer ∆V, segment time, mass, thrust, and low-thrust constraint.

while the variable time had a peak of 0.900 newtons. The solver is limited by the fixed time placement
of each impulsive maneuver which means it, overall, cannot make the greatest change in orbital state
when compared to the variable time optimization. For the variable time case, the optimizer is able
to exploit the dynamical system’s properties (such as burning at periapsis for the greatest energy
change), in order to effectively reduce the total impulsive maneuver cost. Both conditions still satisfy
the low-thrust approximation proposed by Sims and Flanagan, but yield considerably different results
which is worth noting during the trajectory design exploration phase.

3.3 Out of the Ecliptic, Multi-Revolution Transfers

For this test case, a direct transfer from Earth to rendezvous at Ceres is considered. Ceres is chosen to
demonstrate the algorithm’s ability to read SPICE ephemerides which would theoretically allow this
optimization routine to work for any body with an ephemeris. The previous cases have been of bodies
that are roughly within the ecliptic, and so Ceres is a great candidate to test the optimizer’s ability
to find solutions to inclined bodies. It has a heliocentric inertial inclination of 10.6 degrees. Figure

Figure 7: Variable-time transfer between Earth and Ceres showing the inclination differences between
the two bodies.

7 is the resulting trajectory as seen from a three-dimensional view. The optimization routine is able
to find solutions as such with a little bit of trial and error in the initial guesses. The guess TOF was
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gradually increased from 300 days to 1000 days per run of the optimization (feeding back the results
of the previous run into the next optimization). Then, the initial guess maneuver magnitude was
increased from 0.001 to 0.5 km/s to guide the optimizer in the direction of using more ∆V to find the
solution. Without these changes, the optimizer would either violate the thrust and(or) mass constraints
to attempt a 0-revolution transfer to Ceres. With these considerations in mind, the optimizer is able
to find trajectories to SPICE ephemeris non-planetary bodies.

As with the previous example, a test to see how the optimizer behaves to fixed and variable time
segments is also performed. In this test, the fixed-time and variable-time optimizations were continu-
ously restarted by updating the initial guess of the next run with the final state of the previous solution.
This process was repeated until the total low-thrust ∆V difference between runs was negligible. The
fixed-time and variable-time solutions required 6 and 8 optimizations respectively to reach this point.
The final results are presented in Figure 8 and is summarized in Table 2. It is evident from these
results that the variable time optimization has a lower total ∆V and this is due to better placement
of maneuvers along the trajectory (as discussed in the previous subsection). It also used nearly three
times more thrust (0.3 N to 0.9 N) but has a final mass nearly 100 kg more than the fixed-time solu-
tion (2200 kg versus 2100 kg). Similar the results seen in the Earth-Venus example, the variable-time
optimization has a lower total ∆V as seen in the table. The feasibility and first-order optimality from
FMINCON indicate that both trajectories are reaching Ceres essentially perfectly (state errors are
negligible), but there is likely the ability to further optimize the variable-time solution.

Figure 8: 19 segment transfer between Earth and Ceres. Left subfigure is fixed-time and right subfigure
is variable-time segments.

Parameter Units Fixed-Time Variable-Time
Launch C3 (km2/s2) 14.78315 13.82194
∆V Total (km/s) 10.59539 9.686545
TOF (days) 1899.972 1894.048
∆x (km) -8.55337 -7.86636
∆y (km) -54.1665 -49.8108
∆z (km) -2.14264 -2.83858
∆Vx (km/s) 1.99E-06 1.84E-06
∆Vy (km/s) -1.70E-06 -1.69E-06
∆Vz (km/s) -3.51E-07 -3.04E-07
Feasibility 1.63E-09 4.38E-13
Optimality 6.99E-07 3.57E-04

Table 2: Earth-Ceres transfer optimal solutions for fixed-time and variable-time segments.
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4 Future Work

All the intended topics have have been addressed. Additional ones were explored and couldn’t be
completed due to time. Therefore, it is worth mentioning these parts that have been left as work-in-
progress as of writing this paper.

4.1 Flybys and Multi-shooting

For interplanetary trajectories, gravity assists are key to reduce ∆V costs. The inclusion of flybys
opens up a much broader application of this algorithm. The instantaneous flyby assumption can be
used for a multi-part low-thrust transfer optimization. This can be accomplished by breaking up the
total trajectory into forwards and backwards propagating nodes by using multiple shooting[15]. Figure
9 demonstrates a work-in-progress model of the multiple shooting initial guess generation. Lambert

Figure 9: Initial guess setup for multiple-shooting and flyby implementation. Velocity unit vectors are
only shown on the second leg (Venus-Earth).

arcs between bodies are fit using the guess TOF and trajectory is then broken into the forwards and
backwards shooting segments. A match-point (shown as a red triangle) would need to be coincident
to satisfy the non-linear equality constraint. The decision vector in this example will need to include a
guess encounter time for each body so its state is known. Forwards and backwards arcs, shown in blue
and green respectively, would be propagated from each body. Because the flyby velocity is known, the
appropriate flyby assumptions can be used to find the required energy gain contribution by the body
to patch the trajectory to the next low-thrust arc.

4.2 Penalty Method

It is worth mentioning that solution speed can be considerably increased by reformulating the problem’s
costs and constraints using the penalty method. It works by solving many sub-optimization problems,
where each problem has increasing penalties applied to unmet constraints. These constraints are
refactored to be directly in the cost function and so the original optimization becomes a series of many
unconstrained problems[14]. Constraint terms are multiplied by an increasing coefficient as well as a
scaling coefficient to tune the cost function performance.

minΦk(X⃗) = J(X⃗) + σk

∑
i∈I

max(0, ci(X⃗))2 (12)

Eq. 12 describes the unconstrained minimization problem which uses the augmented cost function.
J is the original cost function and the summation term is the contribution due to the constraints.
The per iteration multiplying term is σk which increasingly penalizes the optimizer for violating the
constraint. Because the constraint term is squared, the only way to incur no additional cost is to
satisfy the constraint. The penalty method is currently utilized by MALTO[10], and this formulation
of the problem can help make the optimizer more robust to initial guesses and reduce computation
time.
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5 Conclusions

In this paper, the Sims-Flanagan approximation for low-thrust trajectories is applied to find optimal
interplanetary transfers. Its integration with MATLAB’s optimization tools is discussed along with
formulations of the costs, constraints, dynamics, and a method to find ’global’ solutions. Various
example cases demonstrate the functionality of this optimizer and how it compares to the existing state
of the art Sims-Flanagan based program, MALTO. The optimizer is able to find solutions with mission
design constraints to bodies of varying inclinations and states relative to each other. The computational
speed is increased using parallel processing, and a significant speed advantage remains by disabling
graphical outputs for each iteration. In all, the Sims-Flanagan method of approximating low-thrust
has been successfully implemented to find interplanetary trajectories. Certainly, improvements to the
project exist and will hopefully be completed in future versions of this project.
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